Inference about clustering and parametric assumptions in covariance matrix estimation

نویسندگان

  • Mikko Packalen
  • Tony S. Wirjanto
چکیده

Selecting an estimator for the covariance matrix of a regression’s parameter estimates is an important step in hypothesis testing. From less robust to more robust, the available choices include: Eicker/White heteroskedasticity-robust standard errors, cluster-robust standard errors, and multi-way cluster-robust standard errors. The rationale for using a less robust covariance matrix estimator is that tests conducted using a less robust covariance matrix estimator can have better power properties. This motivates tests that examine the appropriate level of robustness in covariance matrix estimation. In this paper we propose a new robustness testing strategy, and show that it can dramatically improve inference about the proper level of robustness in covariance matrix estimation. In the leading empirically relevant example, the placebo treatment application introduced by Bertrand, Du‡o and Mullainathan (2004), power of the proposed robustness testing strategy against the null hypothesis “no clustering”is 0.82 while power of the existing robustness testing approach against the same null is only 0.04. We also show why the existing clustering test and other applications of the White (1980) robustness testing approach often perform poorly, which to our knowledge has not been well understood. The insight into why this existing testing approach performs poorly is also the basis for the proposed robustness testing strategy. Keywords: covariance matrix estimator; cluster-robust; heteroskedasticity-robust; power; size, …nite samples. JEL Classi…cation Codes: C10, C12, C13, C52. We thank two anonymous referees for their useful comments and suggestions which has led to an improved presentation of the paper. We also thank Jay Bhattacharya (Stanford University) for numerous discussions on the early versions of the paper. The usual disclaimer applies. yDepartment of Economics, University of Waterloo, Canada. Email: [email protected]. zDepartment of Statistics & Actuarial Science and School of Accounting & Finance, University of Waterloo, Canada. Email: [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Correlation Estimation

We propose prior probability models for variance-covariance matrices in order to address two important issues. First, the models allow a researcher to represent substantive prior information about the strength of correlations among a set of variables. Secondly, even in the absence of such information, the increased flexibility of the models mitigates dependence on strict parametric assumptions ...

متن کامل

Nonparametric Maximum Likelihood Density Estimation and Simulation-Based Minimum Distance Estimators

Indirect inference estimators (i.e., simulation-based minimum distance estimators) in a parametric model that are based on auxiliary nonparametric maximum likelihood density estimators are shown to be asymptotically normal. If the parametric model is correctly specified, it is furthermore shown that the asymptotic variance-covariance matrix equals the inverse of the Fisher-information matrix. T...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Multi-Output Adaptive Neuro-Fuzzy Inference System for Prediction of Dissolved Metal Levels in Acid Rock Drainage: a Case Study

Pyrite oxidation, Acid Rock Drainage (ARD) generation, and associated release and transport of toxic metals are a major environmental concern for the mining industry. Estimation of the metal loading in ARD is a major task in developing an appropriate remediation strategy. In this study, an expert system, the Multi-Output Adaptive Neuro-Fuzzy Inference System (MANFIS), was used for estimation of...

متن کامل

Estimation of the sample covariance matrix from compressive measurements

This paper focuses on the estimation of the sample covariance matrix from low-dimensional random projections of data known as compressive measurements. In particular, we present an unbiased estimator to extract the covariance structure from compressive measurements obtained by a general class of random projection matrices consisting of i.i.d. zero-mean entries and finite first four moments. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2012